Finding Simple Fuzzy Classification Systems with High Interpretability Through Multiobjective Rule Selection

نویسندگان

  • Hisao Ishibuchi
  • Yusuke Nojima
  • Isao Kuwajima
چکیده

In this paper, we demonstrate that simple fuzzy rule-based classification systems with high interpretability are obtained through multiobjective genetic rule selection. In our approach, first a prespecified number of candidate fuzzy rules are extracted from numerical data in a heuristic manner using rule evaluation criteria. Then multiobjective genetic rule selection is applied to the extracted candidate fuzzy rules to find a number of non-dominated rule sets with respect to the classification accuracy and the complexity. The obtained non-dominated rule sets form an accuracy-complexity tradeoff surface. The performance of each non-dominated rule set is evaluated in terms of its classification accuracy and its complexity. Computational experiments show that our approach finds simple fuzzy rules with high interpretability for some benchmark data sets in the UC Irvine machine learning repository.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discussions on Interpretability of Fuzzy Systems using Simple Examples

Two conflicting goals are often involved in the design of fuzzy rule-based systems: Accuracy maximization and interpretability maximization. A number of approaches have been proposed for finding a fuzzy rule-based system with a good accuracy-interpretability tradeoff. Formulation of the accuracy maximization is usually straightforward in each application area of fuzzy rule-based systems such as...

متن کامل

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

Handling High Dimensionality and Interpretability-Accuracy Trade-Off Issues in Evolutionary Multiobjective Fuzzy Classifiers

Fuzzy systems are capable to model the inherent uncertainties in real world problems and implement human decision making. In this paper two issues related to fuzzy systems development are addressed and solutions are proposed and implemented. First issue is related to the high dimensional data sets. Such kinds of data sets lead to explode the search space of generated rules and results into dete...

متن کامل

Multiobjective genetic fuzzy rule selection of single granularity-based fuzzy classification rules and its interaction with the lateral tuning of membership functions

Multiobjective genetic fuzzy rule selection is based on the generation of a set of candidate fuzzy classification rules using a preestablished granularity or multiple fuzzy partitions with different granularities for each attribute. Then, a multiobjective evolutionary algorithm is applied to perform fuzzy rule selection. Since using multiple granularities for the same attribute has been sometim...

متن کامل

Cooperation between the Inference System and the Rule Base by Using Multiobjective Genetic Algorithms

This paper presents an evolutionary Multiobjective learning model achieving positive synergy between the Inference System and the Rule Base in order to obtain simpler and still accurate linguistic fuzzy models by learning fuzzy inference operators and applying rule selection. The Fuzzy Rule Based Systems obtained in this way, have a better trade-off between interpretability and accuracy in ling...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006